

MREM 65

APS mini Plus reader modules

User's guide

1 Content

1 C	ontent	
2 Pr	oduct description	3
2.1	MREM 65 BK reader module	3
2.2	MREM 65 GR reader module	3
3 Te	echnical parameters	4
3.1	Product version	4
3.2	Technical features	4
3.3	Special accessories	5
3.4	Using WIO 22 module for remote output control	5
3.5	Mechanical design	5
4 Ins	stallation	5
4.1	Wiring description	5
4.2	Standard connection	6
4.3	LED Indicators	6
4.4	Installation instructions	6
4.5	Mounting and removal the module	7
5 Se	etting parameters of the reader module	8
5.1	Configurable parameters	8
5.2	Reader module parameters setting	8
6 Re	eader module functioning	<u>S</u>
6.1	"Door Open" function description	g
6.2	Function permanent door lock release according to a time schedule	g
6.3	Alarm states	10
6.4	Standard operating modes	
6.5	Read ID media format	11
6.6	Wiegand interface configuration	11
6.7	Programming mode	13
6.8	ID expiration function	16
6.9	ID with Alarm flag function	16
6.10	O Antipassback function	17
6.1	1 Disabling function	18
6.12	2 Reading synchronization	18
6.13	3 Online authorization	18
7 Si	mplified access rights evaluation	19
8 PI	acing a magnet for tearing-off indication	20
9 11	seful links	20

2 Product description

The *MREM* 65 ¹⁾ reader modules (125 kHz readers with an embedded single door controller) are designed for connection to the RS 485 bus of the *APS mini Plus* access control system, or for standalone operation. It is possible to connect up to 32 reader modules to a single line of the APS mini Plus system. In effect the number of lines is not limited.

The reader module is designed both for outdoor and indoor use.

Pic. 1: MREM 65 BK reader module

2.1 MREM 65 BK reader module

The MREM 65 BK modules are delivered in installation boxes in matt black color (*pic.* 1).

2.2 MREM 65 GR reader module

The MREM 65 GR modules are delivered in installation boxes in dark grey color (*pic.* 2).

Pic. 2: MREM 65 GR reader module

¹⁾ Commercial designation of available versions is described in *table 1*.

3 Technical parameters

3.1 Product version

version	Product designation	Color	Catalogue	Module features ²⁾		
vers	. rouder designation	G 0.0.	number	TF	EM	HID
Product v	MREM 65 – TF	Matt black	53465000	✓	*	✓
	MREM 65 – EM	Matt black	53465001	✓	✓	✓
	MREM 65 GR – TF	Dark grey	53465200	✓	*	✓
	MREM 65 GR – EM	Dark grey	53465201	✓	✓	✓

Table 1: Product version

²⁾ *TF* – TECHFASS factory ID media reading; *EM* – EM Marin ID media reading; *HID* – HID Proximity ID media reading

3.2 Technical features

_			
Technical features	Supply voltage		8 ÷ 15 VDC (SELV)
	Current demand	Typical	80 mA
te3	Current demand	Maximal	90 mA
cal	Version with keypad		N/A
hni	ID technology,	EM Marin	8 cm (with ISO card)
Tec	typical reading range	HID Proximity	5 cm (with ISO card)
	Real-time clock		Yes, with 12 hrs. back-up
		Cards	2,000 ID, 2 programming cards
	Memory	Events	3,400
		Time schedules	64
	Inputs	1 st input	Logical potential-free contact
		2 nd input	Logical potential-free contact
	Outputs	Door lock	OC switching on 0V, 2A/24V
		Alarm	Transistor output 5V/5mA
	I/O Port	External device	Ext. tamper / ext. reader buzzer control / module disable function / reading synchronization MASTER/SLAVE modes
	Indicators		3x LED 1x PIEZO
	Tamper protection	Against tearing-off	Hall probe
	ramper protection	Opening the cover	Opto-electronic
	Communication interfac	е	RS 485
	Alternative data input / output		WIEGAND (configurable)

Table 2: Technical features

3.3 Special accessories

S	MAG	51900200	Magnet for Hall probe
OLIE	MAG WIO 22	51901200	Remote control module, 2x relay
တ္က			

Table 3: Special accessories

3.4 Using WIO 22 module for remote output control

The WIO 22 remote control WIEGAND relay module is designated for secure output control of APS system reader modules. The door open or other functions can be controlled from the module located inside the secure area, while the reader module can be located in the non-secure area.

The module is controlled by *WIEGAND* signal directly from the reader module working in standard operating mode. The module must be paired with appropriate reader module before use.

3.5 Mechanical design

esign	Weight		0.202 kg
	Operating Temperature		-25 ÷ 60 °C
ğ	Humidity		Max 95%, non-condensing
nica	Housing		IP 54
Mechanical design	Pigtail		2 m
	Color	MREM 65 BK	Matt black
		MREM 65 GR	Dark grey
	Dimensions		55x90x25 mm

Table 4: Mechanical design

4 Installation

4.1 Wiring description

nc	Color	Function
ptic	Red	Power sup. +13 VDC
Wiring description	Red blue	Power sup. +13 VDC
qe	Green	I/O Port 3
ring	Blue	GND (0 V)
Wil	Black	A wire - RS 485 line
	White	B wire - RS 485 line
	Pink	Alarm output (AUX)

Color	Function
Green white	WIEGAND data 0
Brown green	WIEGAND data 1
Yellow	Input 1 (IN1)
Grey	Input 2 (IN2)
Violet	Output 1 (transistor)
Brown	0 V
Grey pink	0 V

Table 5: Wiring description

4.2 Standard connection

Connection	Input 1	Door contact, active when door closed; REX button
	Input 2	Request to exit button or handle contact, active when button or handle pressed; Tamper; Disabling function
	Output 1 (transistor)	Door lock control (configurable polarity, default 0V for lock release)
	Alarm output	Low power transistor output (+5 V in any alarm state)
	I/O Port 3	External tamper (Standard operating mode) External reader buzzer control (op. mode with entry reader) Disabling function Reading synchronization: MASTER / SLAVE mode

Table 6: Standard connection

The door monitoring contact (IN1) is operational after its first change of status since switching on the module. Full door lock timing acc. to *tab*. 8 is used when the door status contact is not installed and no Forced Door and Door Ajar alarms are triggered.

4.3 LED Indicators

D1 – upper LED; D2 – middle LED; D3 – lower LED

LED indicators			Continuously lit (red)	Online operating mode
			Flashing with 4 s period (red)	Offline operating mode
	D1	Red-green	Fast switching (red / green)	Address setting mode; RS 485 BUS testing mode
			Single flash (green)	ID media reading
	D2 `	Yellow	Continuously lit / flashing	Programming mode
			Short flashing with 1s per.	Indicating door lock release (configurable)
	D3	Green		Indicating door lock release

Table 7: LED indicators

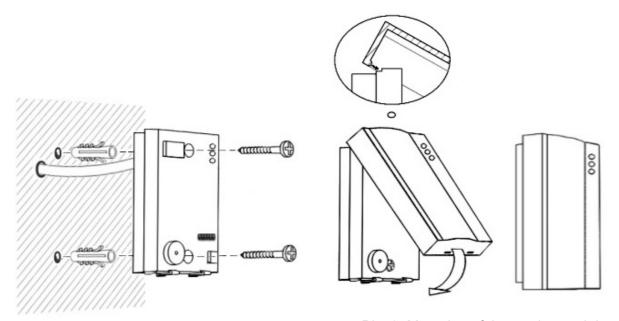
4.4 Installation instructions

The reader module uses passive RF/ID technology, which is sensitive to RF noise sources. Noise sources are generally of two types: radiating or conducting.

Conducted noise enters the reader via wires from the power supply or the host. Sometimes, switching power supplies generate enough noise to cause reader malfunction, it is recommended to use linear system power supplies.

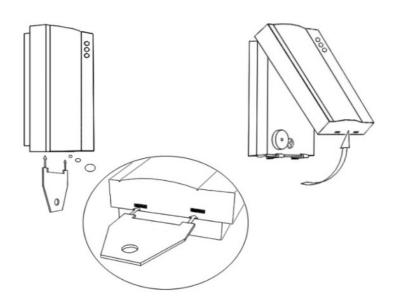
Radiated noise is transmitted through the air. It can be caused by computer monitors or other electrical equipment generating electromagnetic fields.

Consequently, a short distance between the reader modules themselves can cause reading malfunctions – for correct operation it is necessary to keep a minimum distance of 50 cm. Various metallic constructions may have a negative influence on this distance; if there are any doubts, it is recommended to perform a practical test before final mounting.



Nearby metal surfaces may cause a decrease in reading distance and speed. This is caused by the combined effects of parasitic capacitance and conductance.

4.5 Mounting and removal the module


First fasten the base directly to the wall using two relevant fasteners, see *Pic.* 3. Then set the housing on the upper part of the base and rotate the housing until the both parts snaps down.

It is recommended to place an installation box for connection of incoming cables on the other side of the wall or in highly secured area (with in/out readers).

Pic. 3: Mounting of the reader module

Release the clamps using the enclosed key before dismounting the housing, see Pic. 4.

Pic. 4: Removal of the reader module

5 Setting parameters of the reader module

5.1 Configurable parameters

ပ	Parameter		Possible range	Default setting
əter	Door lock release tii	ne	0 ÷ 255 s	7 s
am	Door lock control se	tting	Direct / reverse	Direct
par	Door lock output fur	nction setting	Standard / toggle / pulse	Standard
Configurable parameters	Permanent door lock release according to a time schedule		Never / Schedule index	Never
figu	Door lock status indication		YES / NO	NO
Con	Acoustic signal of de	oor lock release	YES / NO	YES
J	Door ajar time		0 ÷ 255 s	20 s
	First input configura	tion	Door contact / REX button	Door contact
	Second input config	uration	REX button / handle contact / external tamper / tamper / disabling function	REX button
	Third input / output port		Tamper / ext. buzzer signal / disabling function / reading synchronization	Tamper
	Acoustic signalization time - Tamper		0 ÷ 255 s	30 s
	Acoustic signalization time - Forced door		0 ÷ 255 s	30 s
	Acoustic signalization time – Door ajar		0 ÷ 255 s	0 s
	Acoustic signalization time – APB alarm		0 ÷ 255 s	0 s
	Signalization time – Card alarm		0 ÷ 255 s	30 s
	Antipassback function	on setting	See chapter 6.10	Disabled
	Automatic summer	time adjustment	YES / NO	YES
	Release lock with REX button while tamper alarm active		YES / NO	YES
	Online authorization	timeout	0 ÷ 25500 ms	800 ms
	Standalone authoriz	ation after timeout	YES / NO	YES
		Door opened	Enabled / Disabled	Enabled
		Door closed	Enabled / Disabled	Enabled
	Saving events in	Input 2 On	Enabled / Disabled	Enabled
	the module's archive	Input 2 Off	Enabled / Disabled	Enabled
		Strike released	Enabled / Disabled	Enabled
		Strike closed	Enabled / Disabled	Enabled

Table 8: Configurable parameters

5.2 Reader module parameters setting

Detailed instructions for setting reader module parameters are described in the *APS Reader* configuration program user's guide available at the address http://www.techfass.cz/files/m_aps_miniplus_reader_en.pdf.

6 Reader module functioning

The reader module supports the following functions:

- Standard "Door Open" function.
- Door status monitoring.
- Exit-devices contact monitoring.
- Alarm output activated / acoustic signalization activated when any alarm condition occurs.

The "Door Open" function can be activated in 3 different ways:

- Reading a valid ID (card, key fob...).
- Pressing the exit button (according to configuration) cannot be used in alarm condition.
- Via communication line (program request).

6.1 "Door Open" function description

In case the *standard function of the door lock output* is set, the door lock is *released* and the *beeper activated* (when not disabled) when the "Door Open" function is activated. Both outputs stay active until the door is opened or the preset door lock release time has elapsed - see *configuration table*.

In case the *toggle function of the door lock output* is set, the door lock output status is *switched* and the *beeper* is *activated* (when not disabled) when the "Door Open" function is activated. The beeper stays active until the door is opened or the preset door lock release time has elapsed - see *configuration table*. The door lock output status remains unchanged until another "Door Open" function is activated.

In case the *pulse function of the door lock output* is set, the door lock output status is switched for the time defined by the *Pulse width* parameter (*ms*) after the Door Open function is activated.

In case the standard function of the door lock output is set, reading a valid card during door lock release resets the door lock release time.

6.2 Function permanent door lock release according to a time schedule

When the function is set, the door lock is permanently released when relevant time schedule is valid. Reading a valid ID is standardly announced via the communication line (in online operating mode). The forced door alarm cannot be raised when the door lock is permanently released.

The permanent door lock release function and the toggle function of the door lock output are mutually exclusive.

6.3 Alarm states

The reader module can get in following alarm states:

- 1) Tamper alarm
- 2) Forced door alarm
- 3) Door ajar alarm
- 4) Antipassback alarm (Time APB alarm, Zone APB alarm)
- 5) ID with Alarm flag alarm

Alarm state reporting is performed as follows:

- Via communication line (statuses 1, 2, 3, 4, 5)
- By acoustic signal (beeper) (statuses 1, 2, 3, 4).
- Activating the alarm output (AUX output) (statuses 1, 2, 3, 5).

Alarm signaling via communication line requires online running PC with relevant software suitable for online operation (APS 400 nAdministrator).

Two ways of acoustic signaling is carried out:

- Steady signal (tamper).
- Intermittent signal (forced door and/or door ajar, APB alarm).

Acoustic alarm signaling is stopped after a valid ID is presented or pre-set time interval is elapsed, see the configuration table.

If any of the relevant alarm states (with setting of the signaling timer > 0) occurs, the alarm output is activated. It can control any alarm device directly or it can be processed further.

After terminating all alarm conditions the alarm output is deactivated.

The alarm signaling is triggered by any alarm condition.

6.3.1 Tamper alarm

In case of tampering the module (by tearing-off or opening the cover or changing the status of input 2 or input 3 in proper configuration) the "Tamper" state is activated ³⁾.

³⁾ The Tamper alarm handling is operational after their first change of status since switching on the module. There is no need to configure the module when the tamper protection is not used.

6.3.2 Forced Door alarm

The "Forced Door" alarm state is activated when the door is opened without activating the "Door Open" function. The only exception is opening the door with the second module input IN2 active and configured as a handle contact.

6.3.3 Door Ajar alarm

If the door stays open until the pre-defined Door ajar timeout expires – see *Tab. 12*, the "Door Ajar" alarm is activated.

6.3.4 Antipassback alarm

The *Antipassback alarm* is raised when an ID is read during the *Time APB* counter is running or when the ID is blocked by a *Zone APB*.

6.3.5 ID with Alarm flag alarm

ID with Alarm flag alarm occurs when an ID with the Alarm flag is read.

6.3.6 Reading ID during alarm state

Reading an ID doesn't affect the alarm state, reading a valid ID only terminates the acoustic alarm announcement followed by "Door Open" function. Reading an invalid ID only interrupts the acoustic announcement of the alarm state while signalizing "Invalid ID".

6.4 Standard operating modes

The reader module can be in either *online* or *offline* operating mode. The module's functionality is identical in both operating modes; the events archive is read from the reader module's memory when the module goes online When a programming card is read (while in either online or offline mode), the module goes into programming mode.

6.5 Read ID media format

6.5.1 EM Marin ID media format

The EM Marin ID media format can be changed into selected 24, 32 or 40 bits length of ID code. The default length is 40 bits. This setting is only used when unifying of the ID media codes length is required – in combined systems with WIEGAND output readers with a fixed WIEGAND data format IDs (more information in *APS Reader* user's guide available at http://www.techfass.cz/files/m_aps_miniplus_reader_en.pdf).

6.5.2 HID Proximity ID media format

When working with *HID Proximity* technology ID media, the module operates with a code in a recognized 26 or 32 bit format, in other cases it uses all 45 bits of a media (45bit raw format). If a specific format of the *HID Proximity* IDs is required, it can be performed by setting up the user's configuration of read IDs (more information in *APS Reader* user's quide available at http://www.techfass.cz/files/m aps miniplus reader en.pdf).

6.6 Wiegand interface configuration

6.6.1 Standard operating mode

This is the module default operating mode. The Wiegand interface is used for controlling the WIO 22 module in this configuration. When the reader module operates in the standard operating mode, the I/O Port (*tab. 5*) is used as an input for monitoring an external device tamper status.

6.6.2 Wiegand output

The module can be configured into a standard reader with a *WIEGAND output* in 26, 32, 42 or 44 bits format for *EM Marin* technology ID media. Read IDs are formatted with the previous setting first (see *chapter 6.5.1*), after that they are sent in the output format. The *HID Proximity* ID media are sent in the same format as set for the standard operating mode. When the reader module operates in the Wiegand output operating mode, the I/O Port (*tab. 5*) is used as an input for monitoring an external device tamper status.

Wiegand	ID media technology	Available configuration of the WIEGAND output format
	EM Marin	26bit, 32bit, 42bit, 44bit
	HID Proximity	Automatically recognized format / 45bit raw data
	HID FIOXIIIIILY	User configuration

Table 9: ID media format in WIEGAND operating mode

Two long beeps and the red LED lit feature powering up the module. The green LED blink indicates an ID reading.

Individual signals function in WIEGAND output operating mode is described in table 10.

<u>.</u> <u>o</u> ´	Input 1	Beeper control (0 V active)
	Input 2	Yellow LED control (0 V active)
	Output 1 (transistor)	Tamper signaling; it follows the alarm state of tamper sensors (tamper signal = transistor switched on) ³⁾

Table 10: Signal function in WIEGAND operating mode

Since the *FW version 5.09* the reading synchronization of a *couple of TECHFASS readers* is implemented, enabling to *cancel the mutual disturbance* of the modules. The reader module offers the *Wiegand data interface synchronization* in *MASTER* mode.

6.6.3 Wiegand input (entry reader)

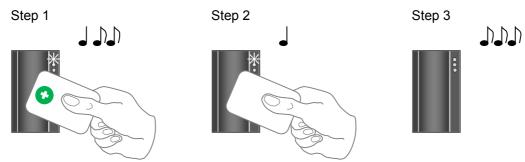
The module can be configured into a mode of controlling the door from both sides (*entry reader mode*).

In the *entry reader mode* an identification at an external reader connected via the *WIEGAND interface* acquires a *reason code 255*; at the same time the reader module operates standardly, the reason codes equal zero.

When the reader module operates in the entry reader operating mode, the I/O Port (*tab. 5*) is used as an output for controlling the entry reader buzzer.

Since the *FW version 5.09* the reading synchronization of a *couple of TECHFASS readers* is implemented, enabling to *cancel the mutual disturbance* of the modules. The reader module offers the *Wiegand data interface synchronization* in *SLAVE* mode.

The WIEGAND input and WIEGAND output operating modes are mutually exclusive.


6.7 Programming mode

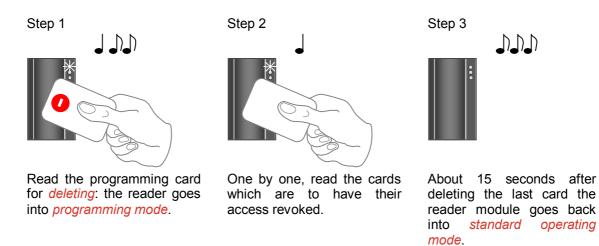
The module enters programming mode by reading one of the two *programming cards* (cards "+" and "-"). The programming mode cannot be entered while the module is in hardware address setting mode (for modules with HW address setting via the communication line). The module's functionality in programming mode can be seen in *pictures 5 a-d*.

It is not possible to use time schedules when inserting cards in programming mode, therefore cards are always valid.

6.7.1 Inserting cards into the reader's memory

Follow these steps for inserting cards into the reader module's memory:

Read the programming card for *inserting*: the reader goes into *programming mode*.


One by one, read the cards which are to be granted access.

About 15 seconds after inserting the last card the reader module goes back into standard operating mode.

Pic.5 a): Inserting cards

6.7.2 Deleting cards from the reader's memory

For deleting the cards from the reader module's memory use following steps:

Pic.5 b): Deleting cards

6.7.3 Deleting cards "above or below"

If a user loses his ID medium, it is usually impossible to delete the ID from the memory with the procedure described in the previous chapter, since the medium is no longer available (with an exception of entering the code at the keypad). Following procedure can be used for deleting such ID. The procedure *requires using an ID medium*, which was inserted *right before or right after the ID medium*, which should be deleted.

Read the programming card for *inserting*: the reader goes into *programming mode*, which is indicated by slow flashing of yellow LED.

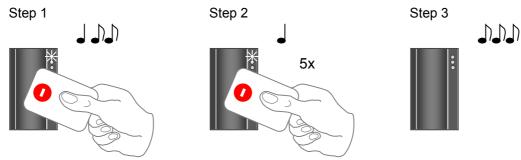
Read the programming card for inserting 5 times in a row; the reader will go into *Deleting cards "above or below"* mode indicated by fast flashing of yellow LED.

Read a card, which is located in the module's memory *right before or right after* the card you wish to delete. After this step the module quickly flashes with yellow LED

For deleting an ID located right before the ID used in precious step, read the programming card for deleting.

Step 4 - B

For deleting an ID located right after the ID used in precious step, read the programming card for inserting.


The reader module goes back into *standard operating mode*.

Pic.5 c): Deleting cards "above or below"

6.7.4 Deleting all cards from the reader's memory

Follow these steps for deleting all cards from the reader module's memory:

Read the programming card for *deleting*: the reader goes into *programming mode*.

Read the programming card for deleting 5 times in a row; the reader will erase all cards from its memory.

The reader module goes back into standard operating mode.

Pic.5 d): Deleting all cards

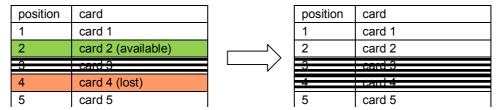
6.7.5 Recommended method for access rights management (using prog. cards)

In case of managing access rights of plenty of users (using programming cards only), it is appropriate to establish a table, which summarizes operation with the reader module memory. All operations (adding and deleting cards) should be stored in the table. Following example shows correct usage of the programming cards and proper filing of the actions:

• Inserting 5 new cards using the procedure from chapter 6.7.1 – Read + (inserting) programming card, read cards 1-5, after 15 s the programming mode is exited, create a table.

position	card
1	card 1
2	card 2
3	card 3
4	card 4
5	card 5

Pic.5 e): Table after inserting 5 cards


• Card 3 gets lost – Delete it using the card 4, which is available, and using the procedure from chapter 6.7.3 – Read + (inserting) programming card, then 5x + (inserting) programming card again, then card 4, and finally – (deleting) programming card. Register the change in your table.

position	card	position	card
1	card 1	1	card 1
2	card 2	 2	card 2
3	card 3 (lost)	-3	cara 3
4	card 4 (available)	4	card 4
5	card 5	5	card 5

Pic.5 f): Deleting card 3 using the card 4, table after deleting card 3

• Card 4 gets lost – Delete it using the card 2, which is available, and using the procedure from chapter 6.7.3 – Read + (inserting) programming card, then 5x + (inserting) programming card again, then card 2, and finally + (inserting) programming card again. Register the change in your table.

Pic.5 g): Deleting card 4 using the card 2, table after deleting card 4

• It is necessary to add another card (card 6). We proceed with the procedure from chapter 6.7.1 again. 1 – Read + (inserting) programming card, read cards 1-5, after 15 s the programming mode is exited. Register the change in your table.

position	card
1	card 1
2	card 2
-3	card 3
4	card 4
5	card 5
6	card 6

Pic. 5 h): Table after inserting card 6

A new card is always inserted at the position after the last inserted card. In case of deleting all cards using the procedure described in *chapter 6.7.4*, it is necessary to create a new filing table.

6.8 ID expiration function

This function is implemented since the FW version 5.0.

It is possible to set an *Expiration date* for every *ID* stored in the module. When the date occurs, the ID becomes invalid (expired). The expiration evaluation is performed on every date change in the module's RTC and when the access rights are downloaded.

6.9 ID with Alarm flag function

This function is implemented since the FW version 5.0.

It is possible so set an Alarm - ID flag for every ID stored in the module. When the ID is read, relevant alarm is raised (and the alarm output is switched for preset time).

6.10 Antipassback function

This function is implemented since the FW version 5.0.

The Antipassback function is defined in two ways:

- Time APB user cannot repeatedly use his ID for defined time
- Zone APB user cannot repeatedly enter an area, where he is already present

The Antipassback function is used *only for the users*, whose access is driven by a *time schedule*. The users with access always granted are not affected by the Antipassback function.

The Antipassback flags for an *ID* can be *reset* by *inserting the ID again* with use of the *programming cards* (offline solution). *All Antipassback flags* are also *reset* whenever new *access rights data are downloaded* from the program.

Both Zone and Time Antipassback flags are written either immediately *after an ID is read*, or after relevant *door is opened* (relevant input is disconnected).

6.10.1 Time Antipassback

The *Time Antipassback* is defined by the *ABP timer initial value* (in minutes), which is set to the ID after passing at the reader module. If the users uses the ID at the address during the timer for the ID is running, the Time APB alarm is raised. Following parameters affect the Time APB function:

- APB timer initial value defines the Time APB flag (timer) value set to the ID after passing at the reader module. If a user uses the ID again before the timer elapses, Time APB alarm is raised.
- Open door after APB time alarm if the option is enabled, the Door open function is performed after the Time APB alarm is raised.

6.10.2 Zone Antipassback

The **Zone Antipassback** is defined by **enabling the option** for the relevant address. The Zone APB flag is set for the ID when passing at the reader module. If a user uses the ID again when the Zone APB flag is set, the Zone APB alarm is raised. Following parameters affect the Zone APB function:

- Enabled enable/disable general Zone APB flag setting.
- Enable in offline mode if the option is not set, the module operates in offline mode like if the APB function was not implemented.
- Open door after APB Zone alarm if the option is enabled, the Door open function is performed after the Zone APB alarm is raised.

6.11 Disabling function

This function is implemented since the FW version 5.08.

The *module disabling function* can be set at the second input and at the third input / output port. The logic of the function is individually configurable. The function is active whenever one or both of the configured inputs are active.

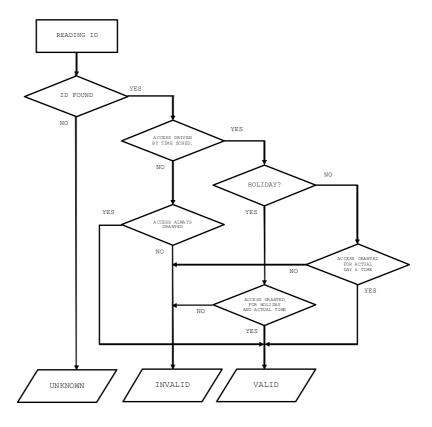
The module behavior is as described below when the disabling function is active:

- User with access driven by a time schedule cannot run the door open function
- User with access always granted is not affected by the disabling function
- Remote door open function cannot be performed
- Remote identification with ID is disabled for users with access driven by a time schedule

The disabling status changes and disabled actions are logged in the events archive.

6.12 Reading synchronization

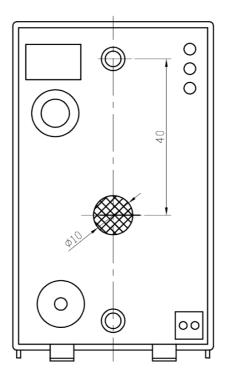
Since the *FW version 5.09* the reading synchronization of a *couple of TECHFASS readers* is implemented, enabling to *cancel the mutual disturbance* of the modules. The reader module offers to use the *IO synchronization* in both *MASTER* and *SLAVE* mode. The *input/output port 3* is used as the *synchronization signal*.


6.13 Online authorization

Since the *FW version 5.11* the *Online authorization of ID* can be used in APS mini Plus system. When the feature is used, the ID validity is resolved in connected PC. To be able to use this authorization mode, the reader module has to be equipped with a *MLO* license.

7 Simplified access rights evaluation

The model of access rights contains time schedules and a table of holidays. A block diagram for access right evaluation can be seen in *Pic.6*.



Pic. 6: Simplified access rights evaluation

8 Placing a magnet for tearing-off indication

Drill a \varnothing 10 mm hole 12 mm deep in a wall behind the reader module at designated place (*Pic.* 7). Insert a magnet (ordering number 51900200) and attach it in the hole with appropriate mastic to ensure the top surface of the magnet matches with the wall surface. Mount the reader module in formerly prepared holes mounted with plugs.

Pic. 7: Magnet placement

9 Useful links

- Wiring diagrams: http://techfass.cz/diagrams-aps-mini-plus-en.html
- Program equipment: http://techfass.cz/software-and-documentation-en.html